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Observations on a spatial-resonance phenomenon 
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The phenomenon was observed during experiments in which a beaker containing 
water was vibrated in one of its bell modes (the inextensional flexural vibrations 
of the wall). For certain combinations of driving force and frequency, a standing 
water wave of large amplitude was generated whose peripheral wavenumber 
might be either zero (i.e. the wave was radially symmetric) or twice that of 
the bell mode. This relationship between the wavenumbers of the bell mode 
and water wave, and the fact that the driving frequency was many times that 
of the water wave, indicated that this was an instance of a general mechanism 
that has been studied theoretically by Mahony & Smith (1972). For a model 
situation, allowing for dissipative effects and nonlinear coupling between nearly 
resonant oscillations at greatly differing frequencies, they derived a relation- 
ship between the driving force and frequency representing conditions of neutral 
stability (i.e. such that the rate of energy transfer from the high frequency to 
the low frequency oscillations is zero). The aim of the experimental observations 
reported here was to check this relationship and other predictions of their theory. 

1. Introduction 
The phenomenon under study was first noticed in the course of other ex- 

periments on liquids subject to high frequency vibrations. A beaker containing 
water was vibrated continuously near resonance in one of its bell modes,? and 
in certain ranges of the frequency and amplitude of these vibrations standing 
waves were observed to build up in the water, generally reaching amplitudes 
very much larger than that of the elastic vibrations of the beaker wall. The 
outstanding and initially puzzling feature of the phenomenon was that the 
water wave frequency was a very small fraction (typically about A) of the 
excitation frequency, so that none of the familiar mechanisms of energy transfer 
between wave modes, for example, ‘parametric ’ excitation modelled by the 
unstable solutions of Mathieu’s equation, appeared to be relevant. Another 
remarkable feature was that if the bell mode had a peripheral wavenumber 
k 3 2 (i.e. there were 2k nodes spaced around the circumference of the beaker) 
then water waves might be generated with a wavenumber of either zero or 2k. 

In fact both these features indicate that the phenomenon is a good example 
of a general mechanism recently discovered by Mahony & Smith (1972), whose 

-f These are the gravest elastic vibrations of an open-ended shell: the modes in which 
a wine glass rings after being tapped. 
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theoretical paper on the subject appears at the same time as this paper. The 
mechanism described by them provides for the transfer of energy, through 
nonlinear coupling, between lightly damped nearly resonant oscillations at  
greatly differing frequencies, and is such that the overall system can be in an 
unstable state when its energy is concentrated in the high frequency mode. 
Mahony & Smith introduced the term spatial resonance for the general phe- 
nomenon; another likely instance of it is also mentioned in their paper.? 

The following theoretical results obtained by them have been tested by the 
present experiments. First, we recall the familiar response relationship, as used 
in their theory, for the forced simple harmonic oscillations of a resonant system 
with linear damping. Thus, adopting most of their notation, we have for the 
high frequency elastic vibrations 

A = B/(A2+v2)4,  (1) 

where A is the amplitude of the displacements of the beaker wall (at any 
representative point, not a node), B is proportional to the amplitude of the 
driving force applied to the beaker, v is the logarithmic decay rate of free 
vibrations and A = w - w,, is the difference between the (radian) frequency w 
of the excitation and the resonance frequency wo. The particular results to be 
tested (equations (17a, b)  in Mahony & Smith’s paper) express conditions of 
neutral stability; they were originally given in terms of the excitation amplitude 
B, but we now use the formula (1) to express them rather more conveniently 
for present purposes. Thus the critical value A, of the vibration amplitude A ,  
above which the high frequency vibrations become unsbable and lose energy 
to the water waves, is given by 

if A > 0 ,  v‘((A2 + v2 - (r2)2 + 4v2c2) 
4v(ryA 

A: = 

where (r is the water wave frequency, v’ is the damping rate for free water 
waves and y ( = a/3 in Mahony & Smith’s notation) is a parameter of the physical 
system relating to the nonlinear coupling between the high and low frequency 
modes. It was assumed by Mahony & Smith that y is real and positive and this 
assumption will be checked in $3 .  

With the equipment to be described, the frequencies w ,  wo, CT and the damping 
rate v’ could all be measured directly. Also, A could be measured as a function 
of w for oonstant B, and hence by comparison with the theoretical relation (1) 
the decay rate v for the high frequency vibrations could be estimated. The curve 
of neutral stability was obtained by plotting A,  against A. Each point on the 
curve was obtained by plotting observed growth rates against A and then extra- 
polating to zero growth rate. The extrapolation was guided by the theoretical 
prediction (implied by equation (16) in Mahony & Smith’s paper) that at  a fixed 
w the growth rate is proportional to A 2  - A:. Using the values of v, v’ and CT 

t See also Lindholm, Kana & Abramson (1962). 
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obtained experimentally, it was then possible to  plot, the curve of neutral 
stabiliby as given by equations (2) for comparison with the experimental 
results. 

2. Experimental apparatus and procedure 
The rim was removed from a 4 libre Pyrex beaker and the beaker was then 

glued onto a rubber sheet of t in. thickness fasbened to a wooden board. The 
electro-magnetic transducer used to drive the beaker and the probe of the 
metering system described below were also fixed rigidly to this horizontal board. 
The driving spindle of the transducer was glued to a point about mid-way 
between the water level and the base. 

A ‘Wayne Kerr ’ vibration/distance meter with its output; displayed on an 
oscilloscope was used to measure the displacement of the wall of the vibrating 
beaker. This meter is sensitive to the electrical capacitance between a stationary 
probe and a moving conducting surface which has to  be grounded, so to employ 
it for the present purpose a strip of silver paper was taped to the wall of the 
beaker and grounded by a fine wire. The transducer (‘Pye-Ling’ model 101) 
was driven by the amplified signal from a stabilized oscillator, and an electronic 
counter was used to record the working frequency, which could be set to 
within 0-05 Hz. 

Although it is often possible to use such a proximity meber directly to measure 
the displacements of a water surface, this method proved impracticable for the 
water waves in most of the present experiments, owing to the presence of 
vigorous capillary waves and spray formation at the antinodes of the vibration 
of the beaker walls. [These capillary waves were examples of the ‘crispations’ 
first; studied by Faraday, as described by Rayleigh (i894,S 354).] Accordingly, 
the low fiequenoy standing waves excited in the water were monitored by 
observing the modulations in the response of .tihe beaker walls. This method 
proved sensitive enough to enable the growth-rate measurements to be made 
before the waves had grown to visible size. The proximity meter was used, 
however, to measure the decay rate for the (free) water waves; a capacitive 
probe similar to but larger than the one used to  measure the beaker vibrations 
was then mounted above trhe free surface of the water, which was grounded by 
an immersed wire. 

In  both the aforementioned applications of the proximity meter to measure 
displacements, manufacturer’s tables indicated that no correction was needed 
for the effects of curvature of the moving surface. 

2.1. Response curve 
To obtain the response curve for the primary vibrations of the beaker, the 
transducer was driven with a constant current (of about 0.1 amps r.m.8. into 
the 3 ohm transduoer) while the frequency was varied. The output from the 
proximity meter was noted from the oscilloscope trace. 
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2.2.  Growth rates 

It proved essential to keep the water clean, especially the surface, in order to 
obtain consistent results. Distilled water was used, with a crystal of thymol 
dissolved in it to inhibit bacteriological effects, and a vacuum line from a jet 
pump was used to skim the surface before each experimental run. The water 
was then topped up to a standard level. It was found that small changes (up to 
about 0.2 yo) were liable to occur in the resonance frequency of the system, so A 
was evaluated from the resonance frequency observed during the experimental 
run in question. 

To measure the growth rate of the water waves at a particular frequency the 
transducer was driven with a constant current and a record was taken of the 
times at which the amplitude of modulation on the high frequency vibration 
passed a succession of predetermined values, When conditions were near the 
threshold of stability, however, the time scale for appreciable growth was in- 
conveniently long, of the order of several minutes. I n  this oase the surface was 
given a small disturbance artificially and the growth or decay of the resulting 
waves was noted. This procedure greatly aided the extrapolation to zero growth 
rate on a plot of the growth rate against A:. 

2.3. Determiwtion of v' and r 
The decay rate v' for free-surface waves was determined in a manner very 
similar to that used to obtain the growth rates arising from the instability 
mechanism. Water waves were set up by the latter mechanism and then the 
high frequency drive was switched off. With the capacitive probe mounted 
above the water surface, the amplitude of the oscilloscope trace was noted as 
a function of time. The period 2nlr of the water waves was read off from the 
trace at the same time, as a check on a measurement made by stop-watch. 

3. Experimental results and discussion 
Figure 1 shows the experimental response curve and model curve giving the 

best fit, for which the chosen value of v is 0.95 s-l. The decay curve for the 
radially symmetric water wave is shown in figure 2. From this the experimental 
value of v' is estimated to be 0.028 s-l. 

In  figure 3 a typical set of growth-rate measurements at fixed frequency is 
shown, from which the value of A: can be obtained for the particular frequency. 

There is no obvious reason why y should be real for the experimental system 
used. So Ma.hony & Smith's calculation of neutral-stability conditions was re- 
peated with allowance for complex values of y. This gave an expression analogous 
to (2b) ,  and a least-squares fit with the experimental data gave the imaginary 
part of y to be only about & of the real part, so it can justifiably be ignored 
as this is well within the margin of experimental error. Reverting to Mahony & 
Smith's expression (17), it is now possible to calculate the minimum value of A, 
according to our equation (2a).  With y taken to  be real this turns out to be 
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FIG- 1. Theoretical and experimental response curves. A is the difference between the 

working frequency and the resonant frequency. - - -, theory; -, experiment. 

Beaker response (arbitrary units) 

FIGTJRE 2. Decay of the radially symmetric water wave. 
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FIGURE 3. Growth rate against (response)* for fixed frequency. 
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FIGURE 4. Theoretical and experimental curves showing the threshold of 
stability. - - -, theory; -, experiment. 

well beyond the capabilities of the transducer used, and so explains why no 
surface waves could be generated for A < 0. 

Figure 4 gives the theoretical and experimental curves of neutral stability 
for A > 0,  with respect to the symmetric water wave mode. It was not possible 
to extend the experimental curve beyond A = 4-4 Hz, owing to the presence 
of the waves with peripheral wavenumber 4. These waves were anticipated 
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F I ~ ~ E  5. Suggested relationship between the curves of neutral stability for two types 
of water wave. - - -, wave with peripheral wavenumber 4; -, radially symmetric wave. 

from the model calculation of Mahony & Smith, but it proved impossible to 
sustain them for long enough to make any accurate measurements; they always 
interacted with and eventually became dominated by the radially symmetric 
waves. For some values of A, however, this interaction proceeded very slowly. 
The motion then observed was approximately radially symmetric, but the pre- 
dominant frequency was 5Hz, in contrast with the resonance frequency 
u = 33 Hz for the free symmetric waves. Since the waves with wavenumber 4 
had a frequency of about 3-4 Hz, this appears to be a high order interaction 
beyond the scope of the model calculation. It was possible to excite the inter- 
action when A lay in the range 44-5-0 Hz but for larger values of A there was 
insufficient power available from the transducer. It ought to be mentioned also 
that the waves with wavenumber 4 have been generated for values of A down 
to 2.6 Hz, but not below this figure. From this, and the fact that the minimum 
value of A, given by equation ( 2 b )  occurs for 

A2 = 8(v4 + v2u2 + c+)* - *(v2 - u') 

(which is monotonic increasing with a), it appears that the relationship between 
the neutral-stability curves for the two different water wave modes is as shown 
in figure 5.  The two curves are SO close to each other for A > 4.4 Hz that one 
cannot expect to generate either wave without the other. 

The agreement between the experimental results and Mahony & Smith's 
model calculation is considered to be quite satisfactory, justifying reasonable 
confidence in the validity of their theory. The discrepancy for small A is probably 
due largely to the presence of the Faraday capillary waves, which are an 
additional dissipative mechanism for large driving amplitudes. 
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